跳转至

4-3,nn.functional 和 nn.Module#

import os
import datetime

#打印时间
def printbar():
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("\n"+"=========="*8 + "%s"%nowtime)

#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 

一,nn.functional 和 nn.Module#

前面我们介绍了Pytorch的张量的结构操作和数学运算中的一些常用API。

利用这些张量的API我们可以构建出神经网络相关的组件(如激活函数,模型层,损失函数)。

Pytorch和神经网络相关的功能组件大多都封装在 torch.nn模块下。

这些功能组件的绝大部分既有函数形式实现,也有类形式实现。

其中nn.functional(一般引入后改名为F)有各种功能组件的函数实现。例如:

(激活函数)
* F.relu
* F.sigmoid
* F.tanh
* F.softmax

(模型层)
* F.linear
* F.conv2d
* F.max_pool2d
* F.dropout2d
* F.embedding

(损失函数)
* F.binary_cross_entropy
* F.mse_loss
* F.cross_entropy

为了便于对参数进行管理,一般通过继承 nn.Module 转换成为类的实现形式,并直接封装在 nn 模块下。例如:

(激活函数)
* nn.ReLU
* nn.Sigmoid
* nn.Tanh
* nn.Softmax

(模型层)
* nn.Linear
* nn.Conv2d
* nn.MaxPool2d
* nn.Dropout2d
* nn.Embedding

(损失函数)
* nn.BCELoss
* nn.MSELoss
* nn.CrossEntropyLoss

实际上nn.Module除了可以管理其引用的各种参数,还可以管理其引用的子模块,功能十分强大。


二,使用nn.Module来管理参数#

在Pytorch中,模型的参数是需要被优化器训练的,因此,通常要设置参数为 requires_grad = True 的张量。

同时,在一个模型中,往往有许多的参数,要手动管理这些参数并不是一件容易的事情。

Pytorch一般将参数用nn.Parameter来表示,并且用nn.Module来管理其结构下的所有参数。

import torch 
from torch import nn 
import torch.nn.functional  as F
from matplotlib import pyplot as plt
# nn.Parameter 具有 requires_grad = True 属性
w = nn.Parameter(torch.randn(2,2))
print(w)
print(w.requires_grad)
Parameter containing:
tensor([[ 0.3544, -1.1643],
        [ 1.2302,  1.3952]], requires_grad=True)
True
# nn.ParameterList 可以将多个nn.Parameter组成一个列表
params_list = nn.ParameterList([nn.Parameter(torch.rand(8,i)) for i in range(1,3)])
print(params_list)
print(params_list[0].requires_grad)
ParameterList(
    (0): Parameter containing: [torch.FloatTensor of size 8x1]
    (1): Parameter containing: [torch.FloatTensor of size 8x2]
)
True
# nn.ParameterDict 可以将多个nn.Parameter组成一个字典

params_dict = nn.ParameterDict({"a":nn.Parameter(torch.rand(2,2)),
                               "b":nn.Parameter(torch.zeros(2))})
print(params_dict)
print(params_dict["a"].requires_grad)
ParameterDict(
    (a): Parameter containing: [torch.FloatTensor of size 2x2]
    (b): Parameter containing: [torch.FloatTensor of size 2]
)
True
# 可以用Module将它们管理起来
# module.parameters()返回一个生成器,包括其结构下的所有parameters

module = nn.Module()
module.w = w
module.params_list = params_list
module.params_dict = params_dict

num_param = 0
for param in module.parameters():
    print(param,"\n")
    num_param = num_param + 1
print("number of Parameters =",num_param)
Parameter containing:
tensor([[ 0.3544, -1.1643],
        [ 1.2302,  1.3952]], requires_grad=True) 

Parameter containing:
tensor([[0.9391],
        [0.7590],
        [0.6899],
        [0.4786],
        [0.2392],
        [0.9645],
        [0.1968],
        [0.1353]], requires_grad=True) 

Parameter containing:
tensor([[0.8012, 0.9587],
        [0.0276, 0.5995],
        [0.7338, 0.5559],
        [0.1704, 0.5814],
        [0.7626, 0.1179],
        [0.4945, 0.2408],
        [0.7179, 0.0575],
        [0.3418, 0.7291]], requires_grad=True) 

Parameter containing:
tensor([[0.7729, 0.2383],
        [0.7054, 0.9937]], requires_grad=True) 

Parameter containing:
tensor([0., 0.], requires_grad=True) 

number of Parameters = 5
#实践当中,一般通过继承nn.Module来构建模块类,并将所有含有需要学习的参数的部分放在构造函数中。

#以下范例为Pytorch中nn.Linear的源码的简化版本
#可以看到它将需要学习的参数放在了__init__构造函数中,并在forward中调用F.linear函数来实现计算逻辑。

class Linear(nn.Module):
    __constants__ = ['in_features', 'out_features']

    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)

    def forward(self, input):
        return F.linear(input, self.weight, self.bias)

三,使用nn.Module来管理子模块#

一般情况下,我们都很少直接使用 nn.Parameter来定义参数构建模型,而是通过一些拼装一些常用的模型层来构造模型。

这些模型层也是继承自nn.Module的对象,本身也包括参数,属于我们要定义的模块的子模块。

nn.Module提供了一些方法可以管理这些子模块。

  • children() 方法: 返回生成器,包括模块下的所有子模块。

  • named_children()方法:返回一个生成器,包括模块下的所有子模块,以及它们的名字。

  • modules()方法:返回一个生成器,包括模块下的所有各个层级的模块,包括模块本身。

  • named_modules()方法:返回一个生成器,包括模块下的所有各个层级的模块以及它们的名字,包括模块本身。

其中chidren()方法和named_children()方法较多使用。

modules()方法和named_modules()方法较少使用,其功能可以通过多个named_children()的嵌套使用实现。

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()

        self.embedding = nn.Embedding(num_embeddings = 10000,embedding_dim = 3,padding_idx = 1)
        self.conv = nn.Sequential()
        self.conv.add_module("conv_1",nn.Conv1d(in_channels = 3,out_channels = 16,kernel_size = 5))
        self.conv.add_module("pool_1",nn.MaxPool1d(kernel_size = 2))
        self.conv.add_module("relu_1",nn.ReLU())
        self.conv.add_module("conv_2",nn.Conv1d(in_channels = 16,out_channels = 128,kernel_size = 2))
        self.conv.add_module("pool_2",nn.MaxPool1d(kernel_size = 2))
        self.conv.add_module("relu_2",nn.ReLU())

        self.dense = nn.Sequential()
        self.dense.add_module("flatten",nn.Flatten())
        self.dense.add_module("linear",nn.Linear(6144,1))
        self.dense.add_module("sigmoid",nn.Sigmoid())

    def forward(self,x):
        x = self.embedding(x).transpose(1,2)
        x = self.conv(x)
        y = self.dense(x)
        return y

net = Net()
i = 0
for child in net.children():
    i+=1
    print(child,"\n")
print("child number",i)
Embedding(10000, 3, padding_idx=1) 

Sequential(
  (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
  (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_1): ReLU()
  (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
  (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_2): ReLU()
) 

Sequential(
  (flatten): Flatten()
  (linear): Linear(in_features=6144, out_features=1, bias=True)
  (sigmoid): Sigmoid()
) 

child number 3
i = 0
for name,child in net.named_children():
    i+=1
    print(name,":",child,"\n")
print("child number",i)
embedding : Embedding(10000, 3, padding_idx=1) 

conv : Sequential(
  (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
  (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_1): ReLU()
  (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
  (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_2): ReLU()
) 

dense : Sequential(
  (flatten): Flatten()
  (linear): Linear(in_features=6144, out_features=1, bias=True)
  (sigmoid): Sigmoid()
) 

child number 3
i = 0
for module in net.modules():
    i+=1
    print(module)
print("module number:",i)
Net(
  (embedding): Embedding(10000, 3, padding_idx=1)
  (conv): Sequential(
    (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
    (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_1): ReLU()
    (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
    (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_2): ReLU()
  )
  (dense): Sequential(
    (flatten): Flatten()
    (linear): Linear(in_features=6144, out_features=1, bias=True)
    (sigmoid): Sigmoid()
  )
)
Embedding(10000, 3, padding_idx=1)
Sequential(
  (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
  (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_1): ReLU()
  (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
  (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_2): ReLU()
)
Conv1d(3, 16, kernel_size=(5,), stride=(1,))
MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
ReLU()
Conv1d(16, 128, kernel_size=(2,), stride=(1,))
MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
ReLU()
Sequential(
  (flatten): Flatten()
  (linear): Linear(in_features=6144, out_features=1, bias=True)
  (sigmoid): Sigmoid()
)
Flatten()
Linear(in_features=6144, out_features=1, bias=True)
Sigmoid()
module number: 13

下面我们通过named_children方法找到embedding层,并将其参数设置为不可训练(相当于冻结embedding层)。

children_dict = {name:module for name,module in net.named_children()}

print(children_dict)
embedding = children_dict["embedding"]
embedding.requires_grad_(False) #冻结其参数
{'embedding': Embedding(10000, 3, padding_idx=1), 'conv': Sequential(
  (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
  (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_1): ReLU()
  (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
  (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (relu_2): ReLU()
), 'dense': Sequential(
  (flatten): Flatten()
  (linear): Linear(in_features=6144, out_features=1, bias=True)
  (sigmoid): Sigmoid()
)}
#可以看到其第一层的参数已经不可以被训练了。
for param in embedding.parameters():
    print(param.requires_grad)
    print(param.numel())
False
30000
from torchkeras import summary
summary(net,input_shape = (200,),input_dtype = torch.LongTensor)
# 不可训练参数数量增加
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
         Embedding-1               [-1, 200, 3]          30,000
            Conv1d-2              [-1, 16, 196]             256
         MaxPool1d-3               [-1, 16, 98]               0
              ReLU-4               [-1, 16, 98]               0
            Conv1d-5              [-1, 128, 97]           4,224
         MaxPool1d-6              [-1, 128, 48]               0
              ReLU-7              [-1, 128, 48]               0
           Flatten-8                 [-1, 6144]               0
            Linear-9                    [-1, 1]           6,145
          Sigmoid-10                    [-1, 1]               0
================================================================
Total params: 40,625
Trainable params: 10,625
Non-trainable params: 30,000
----------------------------------------------------------------
Input size (MB): 0.000763
Forward/backward pass size (MB): 0.287796
Params size (MB): 0.154972
Estimated Total Size (MB): 0.443531
----------------------------------------------------------------

如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号"Python与算法之美"下留言。作者时间和精力有限,会酌情予以回复。

也可以在公众号后台回复关键字:加群,加入读者交流群和大家讨论。

image.png